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An Efficient Finite Element Formulation
to Analyze Waveguides with Lossy
Inhomogeneous Bi-Anisotropic Materials

Luis Valor and Juan Zapata

Abstract—In this paper a finite element formulation in terms
of the magnetic field is presented for the analysis of waveguides
with bianisotropic media. Such a formulation can deal with lossy
inhomogeneous materials characterized by simultaneous permit-
tivity, permeability, and cross-coupling (as in optical activity)
arbitrary full tensors. The analysis takes into account arbi-
trary cross sections, and results in spurious-mode suppression,
complex-mode computation, and the possibility of alternatively
specifying the frequency or the complex propagation constant as
an input parameter. In this way, many novel classes of waveg-
uides with promising applications, such as chirowaveguides and
chiroferrite-waveguides, can be analyzed. The formulation leads
to a quadratic sparse eigenvalue problem which is transformed
into a sparse generalized eigenvalue problem. This eigensystem
is solved by the subspace method, the sparsity of the matrices
being fully utilized. The proposed method has been validated by
analyzing waveguides with biisotropic and bianisotropic materi-
als. The agreement with previously published data is found to be
excellent.

I. INTRODUCTION

N RECENT YEARS, much research effort has been de-

voted to the analysis of electromagnetic waves in bian-
isotropic and biisotropic materials. These media are char-
acterized by linear constitutive relations which couple the
electric and magnetic field vectors by four independent tensors
(bianisotropic) or by four independent scalars (biisotropic).
This effort is due to the wide potential applications of gy-
roelectric and gyromagnetic materials, to design microwave
and millimeter wave circuit components such as converters,
depolarizers, polarimeters, and directional couplers [1]. A
chiral medium is a special case of biisotropic medium. Such
material may be used to design guided wave structure named
chirowaveguide.

The finite element method (FEM) is based on a spatial
discretization. This allows one to handle waveguide cross
section geometries which are very similar to the real structures
employed in practical devices. These complex structures do
not lend themselves to analytical solutions. As a consequence
the FEM constitutes a promising tool to characterize this type
of applications.
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In spite of that, there is at present no available FEM
formulation, useful for the two—dimensional (2-D) analysis of
waveguides with bianisotropic media.

Svedin [2], [3] employs a six-component vector finite ele-
ment formulation which permits the analysis of media charac-
terized with cross-coupling scalars.

In this paper a formulation is proposed to solve waveguides
with bi-anisotropic materials. Such bianisotropy is represented
by a full 6 X 6 matrix. The proposed three component vector
formulation has the capability of handling losses and the
ability to compute complex modes. This is accomplished by
specifying the frequency as an input parameter and solving for
the complex propagation constant as the eigenvalue. Spurious
solution appearance is suppressed by employing an edge
element which, besides, enables the analysis of structures with
reentrant corners.

This formulation leads to a sparse complex nonhermitic
quadratic eigenvalue problem which is transformed into a
sparse complex nonhermitic generalized one [4]. Such eigen-
system is solved efficiently by a method based on the subspace
iteration algorithm which fully makes use of the sparsity
of the matrices. Versatility and accuracy of the proposed
finite element formulation are assessed by analyzing different
bianisotropic waveguides. The results obtained show excellent
agreement with previously available data.

II. THEORETICAL ANALYSIS

Any material may be characterized, from the macroscopic
point of view, by means of the following set of constitutive
relations [5] for the time harmonic excitation

B o

where ﬁ,ﬁ,ﬁ,ﬁ represent, respectively, the electric dis-
placement, magnetic induction, electric, and magnetic field

_ eolel €]
[M] = [ (EC] uo[u]} @

is the characteristic bianisotropic 6 X 6 tensor where &g
and po are the permittivity and permeability of free space
and [e], [u], [€], [s] the relative permittivity, the relative per-
meability and the two cross-coupling tensors, respectively.
Such tensors are written, in a rectangular Cartesian coordinate
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system, as 3 x 3 complex matrices in the form

Exr Euy Cfzz
g=le] = |eye Eyy  Eys
€zx Czy Euz
Hex Moy Hazoz
o= [/L] = [HBye  Hyy  Hyz
/I': Z o)
Litzr Hay (3)
- fJ.I gzy EJ:
é. = [E] = £y£ Eyy £uz
_E;’J fzy f:z
[Seo Sey  Sez
C=[s]= [Syx Syy Sue
Szo Szy  Saz

Two interesting particular cases to be pointed out occur
when [€] and [¢] are both null and when the characteristic
bianisotropic tensor becomes real. In that case the bianisotropic
media become anisotropic and biisotropic media, respectively.

Let us consider a waveguide of arbitrary cross-sectional
shape Q in the z-y plane, uniform along the direction of
propagation (z-axis) and filled with lossy inhomogeneous and
bianisotropic material as described by (1) and (2). Its boundary
T" is a combination of a perfect electric conductor I'; and a
perfect magnetic conductor I's (Fig. 1).

The source-free Maxwell equations can be written as

VxE=-— jwﬁ
. L 4)
V x H=4wD
where w is the angular frequency. It is assumed that the
electromagnetic field in the waveguide varies as eUwt=7%),
where v = « + j/3 is the complex propagation constant. and
o, 3 are the attenuation and phase constants, respectively.

From (1), (2), and (4) the bianisotropic Helmholtz equation

for the magnetic field is found to be

V x &V x H — jwV x e€H + jwceV x H

+wéecH — kKpH =0 (5)
where
€ir €ry €uz
e="'=le,, e, €y (6)
€ €zy €zz

and kg is the free space wavenumber.
The boundary conditions are satisfied by enforcing the
following equations

nXx(eV x H — jweEH) =0
Aix H=0

on 1';

(7
on I'y
where 7 is a unit vector in the same plane of 2, normal to the
boundary I" and directed outwards (Fig. 1).

Considering trial tfunctions [ and test functions w in an
admissible space [6], and applying vectorial identities to the
expression

/ﬁ(VxéVxﬁ—jwaéfﬁ
Q

+ jweeV x H + w?éecH — KpH)dQ =0 (8)
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Fig. 1. General waveguide geometry

the following weak formulation of the boundary-value problem
can be derived

S(H, @) = ~/

I

W x (eV x H — qwe€ H))dl

+ / [6V x H — jwetH] - [i x @]dly. (9)
T2

After splitting the trial functions H. the test functions w and
the operator V into their transverse and axial parts, the bilinear
form $(H, @) takes the expression

S(H, @)
:/{(Vt X )2
@ —
X [e'2Ve x Hy ~ €V H, — jw@zH,
+ (— — jwp)Hy)
+ Vew. [ 5V, x Hy + &'V, H,
+ (1€ + jw@ ) Hy + jwp' 1)
+ B [(¥E + jwi )iV, X Hy + (=78 = )V H,
+ (=% = juyg — jord +wx — ko) H,
+ (—Jwyg’ + WK — kg5 H.-]
+w.zljwipEVy x Hy — jw' Vo H.
+ (—jwyd’ + wx — k3p) H,
+ (W'Y ~ k§E)ZH]}O

(10)
where
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H=H,+H,2
W= 121} + Wz (1 1)

By imposing homogeneous and natural boundary conditions
of the form

nxw=0 onls

Ax eV x H— jwefH)=0 onTy (12)
respectively, (9) reduces to
%(ﬁu?) =0 (13)

H and w belong to the same space of functions and are smooth
enough for the integrals appearing in (13) to be well defined.

III. FINITE ELEMENT FORMULATION

In this paper, triangular hybrid vector elements which
combine Lagrangian basis functions for the longitudinal com-
ponent with edge elements for the transverse ones, as those
proposed in [7] will be employed. The three components of
the magnetic field are discretized on each element according to

{HP}E <0> <T (%.7))

paoe {H,}e
{Hyle | = | (0)  (Ty(3,4)) (14)
wyl o vy o i |

where (N,) are the first-degree Lagrange polynomials in the
reference space (p,q) and

T (i,j) = N,VN, — N;VN,

Making both trial and test functions be the same, the
discretised equation in (10) can be expressed as

(V2[A] +41B] + [C] + w?[D){H} = 0

7y — {H z}
= (i }

where either the angular frequency or the complex propagation
constant, may be considered as an eigenvalue. In this paper the
complex propagation constant is chosen as an eigenvalue, in
order to analyze structures which support complex modes or
include losses. Additionally, the z-component of the magnetic
field, H, is replaced by H, = H,-~y. With this transformation,
a substantial simplification of the eigensystem is obtained
when the proposed formulation is applied to anisotropic media
in which both [¢] and [4] tensors can be expressed as [¢] =
lewe] + €222 and [p] = [p] + pz532, where [e4], [pe] are
two-by-two tensors [4]. After these manipulations, (16) can
be written in the following form

(Y2 [My] + v[Ma] + [Ms)){H} = 0

H'}

o [

o= {15}

and the [M,] matrices, shown in (18) at the bottom of the page
with [T,] as given in Appendix. Notice that M3 is always a

singular matrix.
By setting

[K]I:[[][\(/.)fls] [J[\?zﬂ [M]/:Hg *[[3141]]

(16)

with

(17

where

and introducing an unknown vector H = ((H.) (H;))T, with
the superscript 1" denoting transposition, the sparse quadratic
eigenvalue problem (17) can be reduced to a generalized
eigensystem

[KT'{X} —~[MV{X} =0

(i)

Equations in (19) can be reordered as described in [4] to

(19)

where

(20)

=T,(%,7) D +T,(%,7) q (15) transform this eigensystem into a new sparse generalized one
is the vectorial basis function for edge (i, 7). [KHX} - ~[M]{X}=0 (21)
- [T5] — [T11] — [T26] + [T2s]  [T5] — [T2r]
[Mi] = Z [ ’ _[1%7] - [12“;3] ” — [T }
_ [T17] —[T5] — [Tua] + [Tae] + [T2s] + [Tas]
[Me] = ze: [—[Tsa] — [T12] - [71175] — [Th9] + [T24] ’ [T5] — [T4] = [Ta0] — [T21] ]
_ [0] [0]
[Ms] = ze: [[0] [T1] = [T1o] — [Tha] + [Ths] + [Tzz]] (18)
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Fig. 2 Normalized propagation constant versus AgR for a crrcular
chirowaveguide of radius R filled with a material characterized by
e=11419, gy =1and £ = —¢ = jupl. (- =1 mS (e e es) this
work. ( ) [2]

in which the sparse properties of the matrices [A’], [M] are
equivalent to those in the original quadratic eigensystem (17).

The final eigensystem (21) involves singular. sparse and. in
general, complex matrices which are neither hermitic nor sym-
metrical. To solve (21), an algorithm based on the subspace
iteration method [4], [8], [9] has been developed in which the
sparsity of the matrices is fully utilized.

IV. NUMERICAL EXAMPLES

This section presents some numerical results in order to
validate the proposed method by comparison with published
data for various waveguides [2], [10].

First, the constitutive relations used in [2], [10]

(§)=[ﬁ?l]ﬁﬁ?ﬂ(§)

are not the same as those utilized in this paper as given in (1).
(2). The equivalence of both sets of parameters was derived
by Lindell er al. [11]. [12] for scalar values. In a similar way,
the equivalence for tensors is found to be

(22)

tolp] = [pp)

[6] = [up][XT]

€] = [X ) @9
eole] = [ep] + [X 7] [pp] [ X T].

After this marginal note. we are ready to show some results.
In Fig. 2. the complex propagation constants for the funda-
mental and higher order modes of a circular chirowaveguide
of radius R are shown. This chiral medium is characterized
by €, = €0, 1y = po and X~ = X = j(,. with the chirality
admittance ¢, = 1 mS [2]. These parameters are transformed

p—
|9
I

|
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n
I

Fig. 3. Normalized propagation constant versus ko ? for a circular wave-
guide of radws R filled with bianisotropic material (o o o @) this work.
( ) [10].

into a relative permittivity e = 1.1419, a relative permeability
t = 1 and cross-coupling factors £ = —¢ = juel.. In the
figure. solid lines represent the results in [2] and dark circles
the computed values obtained by the present approach. They
are found to agree perfectly.

Fig. 3 displays the complex propagation constants for the
same geometry but with a medium which is, according to
(23). characterized by

[1.099 —;0.043 0
€] = |70.043  1.099 0
|0 0 1.142
[0.7 —,03 0
W] = [j03 07 0
|0 0 1
(507 03 0
€] =po|—-03 707 0| x1073
| O 0
[—50.7 —03 0
k] =no| 0.3 —50.7 0l x1073,
0 0

The results obtained by the present method are drawn with
dark circles. They have been compared with those available
in [10]. represented with solid lines, showing excellent agree-
ment.

V. CONCLUSION

A finite element formulation. based on the three components
of the magnetic field, is proposed for analyzing waveguides
with bianisotropic materials. Such formulation has the capabil-
ity to handle simultaneously the permittivity, permeability, and
cross-coupling tensors that may be arbitrarily full. Tts ability
to compute free-spurious complex solutions gives way to the
analysis of lossy structures and complex modes. The proposed
formulation leads to a sparse complex generalized eigenvalue
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problem with matrices which, in general, are neither symmetric
nor hermitic. Such an eigensystem has been efficiently solved,
taking full advantage of the matrix sparsity, by implementing
a method based on the subspace iteration algorithm. Waveg-
uides with biisotropic and bianisotropic materials have been
analyzed to validate the proposed method. The results obtained
show an excellent agreement with previously available data.

APPENDIX
THE EXpPLICIT FORM OF SUBMATRICES [7;]

The form of submatrices of [T,] in the text are given by

(1) = [ [ e-ol41" 1 A1dpdg
(T = [ [ e Adrda

(12 = [ [ 101" el Aldpda
(2 = [ [1A7 el 1dvdg

T3] = f DI [¢},][Tdpdq

= [ / (117 [¢,)[T]dpda
[T7] = / / le;,][D]dpdq

] = / DI (€] [Dldpdq

) = [ [ el Dldrda
(Tl = [ [ TV el T

[T11] —// kg [N

(L] = [ [ BT e Vo

i [
wd = [ [ ulary (ParllTldpda
[T15] = / / Jwepz.[A
o

[Ty7] = / / jw[D]* [#41][N]dpdg
[T1s] = / / Jo[T)T [l
(T} = [ [ sl Dlapas
(1] = [ [ olTIT 2T dpda
(7] = [ [ 5wlT)" (4T Vdpda

[N]dpdq

Tlis2 [T]dpdq

TN)dpdg

(@] [Tdpdq

Aldpdg

(1] = [ [ W1 (KT
(T] = [ [ Gl )V g
Tl = [ [T (XN )dpdg
(Tas) = [ [ g
(2] = [ [ w7 5] Dlpda
(] = [ [ iV 01T dpdg

[A]dpdq

(2] = [ / (T)dpdg
(Tyo] = / / W X,.[NIT[N]dpdg
where
)= {1} el = {2 )
] = (e py) (g = (Eny ~Csz)
] = [t ] = |

(1]

{2

(3]

[4]

[5]

[6]
7

(8}
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m=[G] wa= e )
V] = (V) D] = Eaﬂ]
4= (5 - %52).
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