
IEEE TUNSACTIONS ON MICROWAVE THEORY AND~CHNIQUES, VOL. 44, N0.2, FEBRUARY 1996 291

An Efficient Finite Element Formulation

to Analyze Waveguides with Lossy

Inhomogeneous Bi-Anisotropic Materials
Luis Valor and Juan Zapata

Abstract-In this paper a finite element formulation in terms

of the magnetic field is presented for the analysis of waveguides

with bianisotropic media. Such a formulation can deal with lossy

inhomogeneous materials characterized by simultaneous permit-

tivity, permeability, and cross-coupling (as in optical activity)
arbitrary full tensors. The analysis takes into account arbi-

trary cross sections, and results in spurious-mode suppression,

complex-mode computation, and the possibility of alternatively
specifying the frequency or the complex propagation constant as
an input parameter. In thk way, many novel classes of waveg-

uides with promising applications, such as chh-owaveguides and
chlroferrite-waveguides, can be analyzed. The formulation leads

to a quadratic sparse eigenvalue problem which is transformed

into a sparse generalized eigenvalue problem. Thk eigensystem

is solved by the subspace method, the sparsity of the matrices

being fully utilized. The proposed method has been validated by

analyzing waveguides with biisotropic and bianisotropic materi-

als. The agreement with previously published data is found to be
excellent.

I. INTRODUCTION

I

N RECENT YEARS, much research effort has been de-

voted to the analysis of electromagnetic waves in bian-

isotropic and biisotropic materials. These media are char-

acterized by linear constitutive relations which couple the

electric and magnetic field vectors by four independent tensors

(bianisotmpic) or by four independent scalars (biisotropic).

This effort is due to the wide potential applications of gy-

roelectric and gyromagnetic materials, to design microwave

and millimeter wave circuit components such as converters,

depolarizers, pohtrimeters, and directional couplers [1]. A

chiral medium is a special case of biisotropic medium. Such

material may be used to design guided wave structure named

chirowaveguide.

The finite element method (FEM) is based on a spatial

discretization. This allows one to handle waveguide cross

section geometries which are very similar to the real structures

employedl in practical devices. These complex structures do

not lend themselves to analytical solutions. As a consequence

the FEM constitutes a promising tool to characterize this type

of applications.
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In spite of that, there is at present no available FEM

formulation, useful for the two–dimensional (2-D) analysis of

waveguides with bianisotropic media.

Svedin [2], [3] employs a six-component vector finite ele-

ment formulation which permits the analysis of media charac-

terized with cross-coupling scalars.

In this paper a formulation is proposed to solve waveguides

with bi-anisotropic materials. Such bianisotropy is represented

by a full 6 x 6 matrix. The proposed three component vector

formulation has the capability of handling losses and the

ability to compute complex modes. This is accomplished by

specifying the frequency as an input parameter and solving for

the complex propagation constant as the eigenvalue. Spurious

solution appearance is suppressed by employing an edge

element which, besides, enables the analysis of structures with

reentrant corners.

This formulation leads to a sparse complex nonhermitic

quadratic eigenvalue problem which is transformed into a

sparse complex nonherrnitic generalized one [4]. Such eigen-

system is solved efficiently by a method based on the subspace

iteration algorithm which fully makes use of the sparsity

of the matrices. Versatility and accuracy of the proposed

finite element formulation are assessed by analyzing different

bianisotropic waveguides. The results obtained show excellent

agreement with previously available data.

II. ‘THEORETICAL ANALYSIS

Any material may be characterized, from the macroscopic

point of view, by means of the following set of constitutive

relations [5] for the time harmonic excitation

(3=’M’G) (1)

where ~, ~, ~, ~ represent, respectively, the electric dis-

placement, magnetic induction, electric, and magnetic field

S0[4 [’$1‘M]=[ [<]Po[u] 1 (2)

is the characteristic bianisotropic 6 x 6 tensor where EO

and K. are the permittivity and permeability of free space

and [e], [u], [f], [<] the relative permittivity, the relative per-

meability and the two cross-coupling tensors, respectively.

Such tensors are written, in a rectangular Cartesian coordinate
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system, as 3 x 3 complex matrices in the form

(3)

Two interesting particular cases to be pointed out occur

when [<] and [r] are both null and when the characteristic

bianisotropic tensor becomes real. In that case the bianisotropic

media become anisotropic and biisotropic media, respectively.

Let us consider a waveguide of arbitrary cross-sectional

shape Q in the x-y plane, uniform along the direction of

propagation (z-axis) and filled with lossy inhomogeneous and

bianisotropic material as described by ( 1) and (2). Its boundary

r is a combination of a perfect electric conductor 171 and a

perfect magnetic conductor 172 (Fig. 1).

The source-free Maxwell equations can be written as

vxE=–jw5

‘v Xi?=:jwd

(4)

where w is the angular frequency. It is assumed that the

electromagnetic field in the waveguide varies as e(~~t–-”).

where ~ = a + j/3 is the complex propagation constant. and

o, # are the attenuation and phase constants, respectively.

From ( l), (2), and (4) the bianisotropic Helmholtz equation

for the magnetic field is found to be

+ w2&d – k;pti = o

where

II
e,,L~xve.=~=E–l=eyxeYY eYz

ezJ, ezv e..

and k. is the free space wavenumber.

The boundary conditions are satisfied

following equations

n x (ev x E – .]wFf@) = 0

‘f Lxl?=o

(5)

(6)

by enforcing the

on 1’1
(7)

on r2

where n is a unit vector in the same plane of $2, normal to the

boundary r and directed outwards (Fig. 1)..
Considering trial functions H and test functions ~ in an

admissible space [6], and applying vectorial identities to the

expression

J
G(vx Fvx G–’jtiT7x@

Q

+ ‘jWr~~ X ~ + W2&8 – @@d~ = O (8)

Y

x

Fig. 1. General waveguide geometry

the following wealc formulation of the boundary-value problem

can be derived

2(E, ‘J) = –
/

~u[fi x (EV x fi – ~ti@]]drl
r,

/
+ [ZV x E -jwF/ti]. [ri x ti]dr,. (9)

r2

After splitting the trial functions ~. the test functions ~ and

the operator V into their transverse and axial parts, the bilinear

form Q(ti, u?) takes the expression

‘3(ti, @

= /{(Vt x’lfi,,~

(10)
where
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[

WJZ Vyy Pyz
@ = –pm –P.y –Pzz 1

and

(11)

Vt = 2tl/i3z + yd/13y.

By imposing homogeneous and natural boundary conditions

of the form

ii XG=O onI’Z

iix(Nxfi-jwi@l)=O onrl (12)

respectively, (9) reduces to

()
32, G =0 (13)

H and= belong to the same space of functions and are smooth

enough fcx the integrals appearing in (13) to be well defined.

.
III. FINITE ELEMENT FORMULATION

In this paper, triangular hybrid vector elements which

combine Lagrangian basis functions for the longitudinal com-

ponent with edge elements for the transverse ones, as those

proposed in [7] will be employed. The three components of

the magnetic field are discretized on each element according to

where (i?(t) are the first-degree Lagrange polynomials in the

reference space (p, g) and

T (z, j] = NtVNJ – NjVN,

= Tp(z, j) ; +Tq(z, j) ; (15)

is the vectorial basis function for edge (i, j).

Making both trial and test functions be the same, the

discretised equation in (10) can be expressed as

(72[4 + ‘w] + [c]+ LJJ’[q){fi} = c1 (16)

with

where either the angular frequency or the complex propagation

constant, may be considered as an eigenvalue. In this paper the

complex propagation constant is chosen as an eigenvalue, in

order to analyze structures which support complex modes or

include losses. Additionally, the z-component of the magnetic

field, Hz is replaced by Hz = H: ~y. With this transformation,

a substantial simplification of the eigensystem is obtained

when the proposed formulation is applied to anisotropic media

in which both [s] and [~] tensors can be expressed as [E] =

[:,,] + c~~~~ and [v] = [vtt] + p,~~~, where [~tt], [ptt]are
two-by-two tensors [4]. After these manipulations, (16) can

be written in the following form

(72[~1] + T[~2] + [Ms]){H} = O (17)

where

H;}
{H} = {[ H,}

}

and the [M,] matrices, shown in (18) at the bottom of the page

with [T,] as given in Appendix. Notice that iW3 is always a

singular matrix.

By setting

[0] [I]
[K]’ = [[M3] [A&]

1 ‘M]’= E -w]]

and introducing an unknown vector H = (( H,) (Ht ) )T, with

the superscript T denoting transposition, the sparse quadratic

eigenvalue problem (17) can be reduced to a generalized

eigensystem

[K] ’{x}’ - qhf]’{x}’ = o (19)

where

{x}’ = {$;}. (20)

Equations in (19) can be reordered as described in [4] to

transform this eigensystem into a new sparse generalized one

[K]{x} - T[M]{X} = o (21)

[Ml] = ~ [[T81 - [~d - [T’61 + [~29] [T5!~;6’z7]
-[T7] - [T23]

1

[T17] -[T,] - [TIS] + [TIG] + [Tzs] + [TM]

1
[~’1 = i [-[T,] - [Tlz] - [TM] - [T191 + [~’4] [Tz] - [T,] - [T20] - [T’l]

e

[0]
[~sl = ~ [{; [Tl] - [Tlo] - [T14] + [TH31+ P221

1

(18)
e
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Fig. 2 Normalized propagation constant versus J.OR for a cncular
chlrowavegmde of radius R tilld with a material characterized by
s = 1.1419, If = 1 and< = –< = Jpo<c (. = 1 mS (eeoe) this
work. (— ) D]

in which the sparse properties of the matrices [k”], [TI] are

equivalent to those inthe original quadratic eigensystem (17).

The final eigensystem (zl) involves singular, sparse and. in

general, complex matrices which are neither hermitic nor sym-

metrical. To solve (21), an algorithm based on the subspace

iteration method [4], [8], [9] has been developed in which the

sparsity of the matrices is fully utilized.

IV, NUMERICAL EXAMPLES

This section presents some numerical results in order to

validate the proposed method by comparison with published

data for various waveguides [2], [10].

First, the constitutive relations used in [2], [10]

()[L5 [%]

1()

[r] l?

ti= [-x+] [pp]-’ E
(22)

are not the same as those utilized in this paper as given in (1),

(2). The equivalence of both sets of parameters was derived

by Linden et al. [11]. [12] for scalar values. In a similar way,

the equivalence for tensors is found to be

1/0 [/4= [Wp]
[s]= [//4][x+]
[t] = [.~-l[~p]

(23)

&o[&] = [Cp] + [A”–][/Jp][x+].

After this marginal note. we are ready to show some results.

In Fig. 2, the complex propagation constants for the funda-

mental and higher order modes of a circular chirowaveguide

of radius R are shown. This chiral medium is characterized

by Ep = E., [I,p = ~~o and .Y– = .X-+ = j~C with the chirality

admittance <C = 1 mS [2]. These parameters are transformed

I 1 1

/’
/

HE.,>,

E~,l

2

koR3
4

Fig, 3, Normabzed propagation constant versus k. Ii’ for a circular wave-

guide of radius R filled with biarrlsotroplc material (s o e o ) thm work.

(— ) [10],

into a relative permittivity e = 1.1419, a relative permeability

jj, = 1 and cross-coupling factors f = –< = j//o<C. In the

figure, solid lines represent the results in [2] and dark circles

the computed values obtained by the present approach. They

are found to agree perfectly.

Fig. 3 displays the complex propagation constants for the

same geometry but with a medium which is, according to

(23). characterized by

[

1.099 –,jO.043 O

[c] = jo.(la 1.099 0

‘fll=[~: -’:!!1“1’2
[.70.7 0.3 01

J[cl = /Jo ‘o.~ J07 o x 10-3
00]

‘1=01’ 1

–’jo.7 –0.3 o

–,jo.7 o x 10-3.
0 Oj

The results obtained by the present method are drawn with

dark circles. They have been compared with those available

in [ 10], represented with solid lines, showing excellent agree-

ment.

V. CONCLUSION

A finite element formulation, based on the three components

of the magnetic field, is proposed for analyzing waveguides

with bianisotropic materials. Such formulation has the capabil-

ity to handle simultaneously the permittivity. permeability, and

cross-coupling tensors that may be arbitrarily full. Its ability

to compute free-spurious complex solutions gives way to the

analysis of lossy structures and complex modes. The proposed

formulation leads to a sparse complex generalized eigenvalue
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problem with matrices which, in general, are neither symmetric

nor hermitic. Such an eigensystem has been efficiently solved,

taking full advantage of the matrix sparsity, by implementing

a method based on the subspace iteration algorithm. Waveg-

uides with biisotropic and bianisotropic materials have been

analyzed to validate the proposed method. The results obtained

show an excellent agreement with previously available data.

APPENDIX

THE EXPLICIT FORM OF SUBMATRICES [T’~]

The form of submatrices of [27,] in the text are given by

[Tl] = ~f e,z[A]~[A]dpdq

[~d= jh%l [A]@4

[T,]= /j[D]TIE:l] [A]dpdg
,e

[7’41 = /’/[AIT[?a] [Tl@@

[!!’,] = /jD]qE:t] [T’]tipriq

[Td= /j~lTIEh][T]@@

[T,]= /][TITIE;tl [O$@

p~] = /JLJ]w,][D]dpdq

[T9] = /j[A]T[6~,][D]dpdq

[7’,,] =]] k;[T]~[pt,] [T]dpdq

[Tll] = /] /c;/L.z [N] T[N]czpdq

[TlZ] = /] k;[T]T[&~][~]dPdq

[Tl,] = /] k;[iV]T[L$,][T] dpdq

[Tl,] = /~ jU[A]T[F.Z] [T]dPdg

[T,,] =/] jW~zz [A] T[N]dpdq
e

[T’16] =// jw[D]T[@~,][T]dpdq

[Tl,] = /] jL@]T[QLJ [M@@

[TIs] = /j@[TIT[&Il[&P@
e

[T19] =
/./

jw[T]T [@{t][D]dpdq

[T,,] = /jj@[@:t] [T]cz@q
e

[T,l] =
//

jU[T]T [&] [T]dpdq
e

[T,z] = /’/ w2[T]~[Xtt][T]dpdq

[T,,] = /’~jw[T]~[@jl][lV] dpdq

[T,4] = /j W2[T]~[X.,][~]dPdq

[TM] =/~ jM4ZZ[NlT[4@C@

[~,tj] = /&[N]T[& [D]dpriq

[TzT] = /]jw[~]TIWl@~

[T2sI = j U2[~lT[Xs2] [T]@@

[T29] = /j CLF’xz. [N]T [Aqdpdq
e

where

{1[x,,] = ~:

TP)
[T] = [IT,)

1

[N] = (N,)

[X,2]= (Xz. x., )

[A]= (~-~).
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